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Hydrodynamic Limits for the Boltzmann Process 
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We study the behavior of the nonlinear Markov process associated to the 
Boltzmann equation under both hyperbolic and parabolic space-time scalings. 
In the first case the limit of the process is the solution of an o.d.e, with vector 
field given by a solution of the Euler equation, while in the second case the limit 
of the process, in the incompressible case, turns out to be a diffusion process 
whose drift is a solution of the incompressible Navier-Stokes equation. 

KEY W O R D S :  Boltzmann equation; transport processes; hydrodynamic 
limit; diffusion approximation; stochastic averaging. 

1. I N T R O D U C T I O N  

We consider a gas of hard spheres in the low-density regime on the mean 
free path scale. It has long been known that the behavior of such a system 
is described by the Boltzmann equation for the density f ( t ,  x, v) on the 
one-particle phase space. (1) Lanford (2) proved the convergence of the 
solution of Liouville equations to the solution of the Boltzmann equation, 
in the Grad-Bol tzmann limit, for short times. 

In this paper we take what may be called a Lagrangian point of view, 
that is, we follow the evolution of a single particle, which we will call the 
tracer particle. This evolution is stochastic, since we do not keep track of 
the motion of the other particles. The velocity of our tracer particle jumps 
as a result of the elastic collisions with the environment particles. The 
motion of the tracer particle is therefore described by a transport process 
(X, V) on the phase space H x R 3 (where H denotes the unit 3-dimensional 
torus), driven by a jump process inhomogeneous in time and space. The 
kernel of the generator of the jump process is determined by f ( t ,  x, v) and 
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since the tracer particle is identical to the environment particles, the one- 
dimensional probability distribution of (X, V) has density f ( t ,  x, v)/~, 
where ~ = ~ d x d v f ( t ,  x, v): Thus, (X, V) is a nonlinear Markov process 
whose forward Kolmogorov equation is the Boltzmann equation. We will 
call this process the "Boltzmann process." The physical relevance of the 
Boltzmann process is confirmed by a result of Spohn (3) (see also refs. 4 and 
5), who proved the analog of Lanford's theorem for stochastic processes, 
namely that, at least for short times, (X, V) is the limit of a non-Markov 
process describing the motion of a tracer particle of the hard-sphere gas 
on the microscopic scale. The Boltzmann process also underlies some 
algorithms for the numerical simulation of the Boltzmann equation (see, 
for instance, refs. 6 and 7). 

We are interested in studying the Boltzmann process (X, V) on a 
hydrodynamic space scale (length unit much larger than the mean free 
path) and on two different time scales: in fact, it is natural to expect that, 
if e is the mean free path, on a time interval of order e - l ,  the position 
component of the Boltzmann process converges, as e goes to zero, to a 
deterministic motion, while in order to see any dissipative effect one has to 
wait for an e 2 time. Therefore we consider the Boltzmann equation under 
both the hyperbolic rescaling (e-1 in space and ~-~ in time) 

O,f  ~ + v " V x f f  = e - l Q ( f f  , f~) (1.1) 

where 

( ,  

Q(f, f )  = | dr1 de) 
d ( v t - v ) . c o > ~ O  

•  v l ) f ( t , x , v ) }  (1.2) 

and the parabolic rescaling (~-1 in space and e 2 in time) 

OtF~+e lv .VxF~=~ 2Q(U,F~) (1.3) 

For  the hyperbolic rescaling, Caflish (8) (see also Lachowicz (9)) proved 
that for any smooth solution (p, T, u) of the compressible Euler equation, 
with p and T bounded away from 0, there exists a solution of (1.1) which 
differs from the local Maxwellian of parameters (p, T, u) by an infinitesimal 
of the order of e. For  the parabolic rescaling, in the incompressible case, 
De Masi et al. ('~ showed that for any given smooth solution U(t, x) of the 
incompressible Navie~Stokes equation with density fi and temperature T 
there exists a solution F ~ of (1.3) which differs by an infinitesimal of the 
order of e 2 from the local Maxwellian M ~ of mean ~U, constant density t~, 
and constant temperature T. Thus, in both cases the system reaches a local 
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equilibrium, characterized by the parameters (p, T, u) and (t), T, ~U), 
respectively; physically the latter situation corresponds to looking at a 
macroscopic velocity field very small compared to the sound speed. 

Here we use both the above results to study the limit of the Boltzmann 
processes corresponding to (1.1) and (1.3). Most of this paper is devoted 
to the more complex case of the parabolic rescaling. In this scaling the 
velocity is a fast mode while the position is a slow mode, so that the 
velocity equilibrates faster than the position. The jump frequency goes to 
infinity as e 2 and the collisions give rise to a stochastic perturbation for 
the position of Brownian type. The choice for the velocity scaling brings up 
the Navier-Stokes velocity field as the drift of the limiting process. We 
prove that the position component of the Boltzmann process (X ~, V ~) 
corresponding to (1.3) converges, in the sense of probability measures on 
the path space, to the solution of the following stochastic differential 
equation: 

X(t) = X(O) + t" ds U(s, X(s)) + x/D W(t) (1.4) 
~o 

where U(t, x) is a solution of the incompressible Navier-Stokes equation 
and the diffusion coefficient is given by 

S D6~= 2 ds E[Vi(s) Vj(O)] (1.5) 

In (1.5) the expectation is taken with respect to the global equilibrium 
jump process. The diffusion coefficient has the usual form of a time average 
of a velocity-velocity time correlation. 

The above result falls into the class of diffusion approximations for 
transport processes. Limit theorems of this type were proved in refs. 11 and 
12 for Markov transport processes, with bounded velocities. Here we 
follow the approach proposed in Costantini (13~, which works also in the 
case of non-compact state space (see also ref. 14 for yet another way to 
handle these problems). In our approach the process X ~ is represented by 
a stochastic equation driven by a suitable martingale. High-speed values 
are controlled by the moments of a function determined by the process and 
convergence is derived by the martingale central limit theorem together 
with a suitable stochastic averaging technique. 

In the hyperbolic case, we show that the position component of the 
Boltzmann process (x ~, v ~) corresponding to (1.1) converges, in the sense of 
probability measures on the path space, to the solution of the ordinary 
differential equation 

2 = u(t, x) (1.6) 
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where u(t, x) is a solution of the compressible Euler equation. The proof is 
based on the same computations as for the parabolic case except that the 
martingale central limit theorem does not come into play. 

From the physical point of view the limiting processes (1.4) and (1.6) 
represent the motion of a Boltzmann particle on the hydrodynamic 
time-space scales: in the hyperbolic case the particle moves deterministi- 
cally following the Euler velocity field and the fluctuations o f  the 
microscopic velocities are noneffective. If one waits for a longer time, then, 
in the incompressible approximation, one can see the effect of the viscosity 
as a Brownian perturbation on the deterministic motion driven by the 
Navier-Stokes velocity field. 

In the latter case an interesting question is the relation between the 
diffusion coefficient D of (1.4) and the viscosity which appears in the 
Navier-Stokes equation. This is a typical problem of the relation between 
self and bulk diffusion coefficients (see, for instance, ref. 15). In our case 
both are determined by the global equilibrium properties of the system and 
are related to relaxing times to the equilibrium. Since there exists a 
Lagrangian formulation of the Navier-Stokes equation ~16'17) at macro- 
scopic level which uses as stochastic characteristics the sample paths of a 
diffusion whose drift is the velocity field and whose diffusion coefficient 
(times the density) is the viscosity, it is natural to expect that this process 
coincides with our limiting process. The expression of the viscosity v in 
terms of the Green-Kubo formula in the context of the Boltzmann 
linearized theory is ~1'1~ 

v = 2 T  -1 dt dvvivj(eJtvivj) M(v), i # j  (1.7) 

where M is the global Maxwellian with density ~ and temperature T and 
e J '  is the semigroup corresponding to the linearized Boltzmann operator 
~r which describes the evolution of a small perturbation of the hard-sphere 
Boltzmann system from the equilibrium. Thus, the right-hand side is the 
time average of a current-current correlation function at the equilibrium. 
Equation (1.7) is a kind of fluctuation-dissipation formula for the non- 
equilibrium case. On the other hand, the diffusion coefficient has a very 
similar expression (1.5), where, however, the operator involved is the 
adjoint ,~ of the linear Boltzmann operator [given by (2.4) below with 
f = M ] .  From (1.5) and (1.7) the relation between D and v appears to be 
connected to the spectral properties of the operators A and d .  A simpler 
case is the one of the Maxwellian molecules (1~, for which the spectra of the 
operators ,~ and d are almost explicitly known. Another possibility for 
obtaining some partial answers to the question is to look at some kinetic 
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models with discrete velocities (cellular automata and some model 
Boltzmann equations(18)), for which the kinetic and hydrodynamic 
behaviors are known (18'19). The advantage is that in this case the collision 
operator is a matrix; on the other hand, one has to deal with an intrinsec 
ambiguity in the definition of the linear operator (something like this 
happens for lattice gases(15)). At the moment we are studying the problem 
in these contexts. 

2. F O R M U L A T I O N  OF THE P R O B L E M  A N D  RESULTS 

Our first goal is to construct a stochastic process to describe the 
motion of the tracer particle in a Boltzmann fluid of hard spheres. Let 
f ( t ,  x, v), t~ E0, to], x e H ,  D ~ R  3, be the density of the fluid. The tracer 
particle moves with constant velocity; at random, conditionally exponential 
times it collides with the environment particles and its velocity jumps. The 
jump intensity q(t, x, v) is given by 

q(t, x, v) = ; ~ - ~ ) . ~ o  dv~ dco(vl - v)- cof(t, x, vj ) (2.1 ) 

where co is a unit vector, and v and vl represent the velocities before the 
collision of the tracer particle and of the environment particle, respectively. 
At each collision a direction co is chosen uniformly on the unit sphere and 
a particle of velocity vl is chosen with probability 

q(t,x,v) 
- -  E(v 1 - v).  co]t f ( t ,  x, Vl) dvx 

Then the velocity of the tracer particle changes to a new velocity v' 
according to the rules of elastic collision 

v '=v+ [(v~-v) .co]co (2.2) 

The dynamics just described corresponds to an infinitesimal generators of 
the form 

L t T = v . V ~ y +  A~,.~7 (2.3) 

A,,xT(t, x, v) = ( dr1 dco 
vl-v).o~>~O 

x ( v l - v ) . e a f ( t , x ,  v l ) { y ( t , x , v ' ) - ? ( t , x , v ) }  (2.4) 

In the sequel, whenever convenient, the indices t, x in A,,x will be dropped. 
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If we add the requirement that the tracer particle is identical to the 
environment particles, then its one-time probability distribution must have 
density proportional to f ( t ,  x, v). Therefore the forward Kolmogorov 
equation becomes the Boltzmann equation: 

r v . V x f =  Q(f, f )  (2.5) 

where Q is defined in (1.2) (v'l = V l -  [ ( v l -  v). co]o).  
Let ~M* = ~ M . ( H x  R 3) be the space of the probability measures P on 

H x  R 3 such that 

P(dv)(1 + [vl )(M*)-1/2(•)< oO 
d 

where M* is a global 
let C~M.([S, to], ~M*), 
from Is, to] into ~M* 

Maxwellian, endowed with the weak .  topology, and 
s t  [-0, to), be the space of continuous functions P 

such that 

sup Ivl)(M*) v2(v)< 
s <~ t <~ to  ' 

Denote by cgl'~ • R 3) the space of real-valued functions continuously dif- 
ferentiable in the first variable and continuous in the second one, and by 
rE(Is, to], H)  (~([s ,  to], R3)), s t  [-0, to), the space of continuous functions 
(right continuous functions with left-hand limits) from I-s, to] into H 
(into R3). For every solution f of the Boltzmann equation dominated 
by a Maxwellian M* uniformly in t and x, the operator Lt defined by 
(2.3) uniquely determines a probability measure on ~g([0, t 0 ] , H ) x  
@([0, to], R 3) with one-time density proportional to f ( t , . ,  .): In fact, for 
every s ~ [-0, to), Po ~ ~M*, it can be easily seen that there exists a solution 
to the local martingale problem for (Lt, cgl '~ R3), (s, Po)); an a priori 
estimate based on ref. 20 shows that the function P. defined by the one-time 
distributions of any solution of the above local martingale problem belongs 
to ~M*([S, to], ~M*), and well-known techniques (see, for instance, ref. 21) 
yield that the (weak) forward Kolmogorov equation for L, on Is, to] with 
initial datum Po has at most one solution in this space. The corresponding 
canonical stochastic process (X, V) is a transport nonlinear Markov 
process driven by a jump process inhomogeneous in both time and space. 
It can also be represented by the following stochastic equations: 

;o x ( t )  = x ( o )  + cls V(s) 

V(t) = V(O) + ds Av(s, X(s), V(s)) + Y(t) 

(2.6) 
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where Y is a zero mean local square-integrable martingale (in fact a 
square-integrable martingale). 

Nonlinear Markov processes and martingale problems associated with 
equations of Boltzmann type have been studied also in refs. 4, 5, 22, 
and 23. 

Consider now the rescaled Boltzmann equation (1.2). Our starting 
point to obtain the diffusion approximation is the result of ref. 10, which is 
recalled next in a form tailored to our needs. Let Hs(H, Rk), k e N, be the 
Sobolev space of order s. 

T h e o r e m  2.1 (De Masi, Esposito, Lebowitz). Let U(t, x) be a solu- 
tion of the incompressible Navier-Stokes equation on [0, to] with density 
If and temperature T, continuously differentiable in t, and such that 
U ( . , 0 ) =  Uo, where Uo is a divergenceless field in H~(H, R3), s~>4, and 
U(t,. )e H~(H, R 3) for all t ~< to, and let M ~ be the local Maxwellian 

M~(t,x,v)= ~ f iv-SU(t'x)h2} 
(2~)3/2 exp 2~ 

Then there is an 8o > 0 such that for every e <~ 8o there exists, for a 
suitable initial datum F~(0,.,  .), a (strong) solution F ~ of (1.3) such that 

sup IF~(t, x, v ) -  M~(t, x, v)l ~ c~ezM*(v), Vv ~ R 3 (2.7) 
t ,  x 

for some positive constant C*, for any global Maxwellian M* with mean 
zero, density one, and temperature T * >  2T. 

We consider the process (J(~, V ~) corresponding to the solution F ~ of 
the rescaled Boltzmann equation (1.3) associated to the velocity field U by 
Theorem 2.1. (X ~, V ~) satisfies the rescaled form of (2.6), 

x~( t )  = x~(o)  + 8 1 ds V~(s) 

fo v~ = w ( o )  + 8-~ ds A~v(s, X~(s), V~ + Y~(t) 

(2.8) 

where A t is the operator defined by (2.4) with f =  F ~. In the sequel we will 
also use the operators A~ and A defined by (2.4) with f =  M s and f = M, 
respectively, where M is the global Maxwellian with density r mean zero, 
and temperature T. The corresponding jump intensities will be denoted by 
~]~(t, x, v) and O(v). Our main result can be formulated as follows. 
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T h e o r e m  2.2. The stochastic process X ~ converges, in the sense of 
probability measures on the path space, as e goes to zero, to the solution 
of the stochastic differential equation 

x(t) = x(o) + fs as X(s)) + w, 

where X(O) is uniformly distributed on H and the diffusion coefficient is a 
constant given by 

6ijD-~ --~ f d17 M(v)l.)iA-11)j (2.9) 

where .~ iv is defined up to an additive constant. 

The result of Lachowicz r as formulated in Theorem 2.3 below, 
allows us to prove convergence of the hyperbolically rescaled Boltzmann 
process (Theorem 2.4). 

T h e o r e m  2.3 (Lachowicz). Let (p, 7", u) be a smooth solution of 
the compressible Euler equation on [0, to], such that 

inf p ( t , x ) = % > O ,  i n f T ( t , x ) = c r > O  t,x t,x 

and let m be the local Maxwellian with parameters (p, T, u), 

[27cT(t, ]3/2 exp 2T(t, x) J 

Then there is an eo > 0 such that for every e ~< to there exists, for a suitable 
initial datum f~(O,-, .) ,  a (strong) solution f "  of (1.1) such that 

sup [f~(t, x, v) - m(t, x, v)[ ~ c*eM*(v), Vv E R 3 (2.10) 
t ,  x 

for some positive constant c*, for any global Maxwellian M*  with mean 
zero, density one, and temperature T* > 2 sup,,x T(t, x). 

Let (x ~, v ~) be the process corresponding to the solution f~ of (1.1) 
associated to (p, T, u) by Theorem 2.3. (x ~, v ~) satisfies 

x~(t)=x~(O)+ ds v~(s) 

(2.11) 

v~(t)=v~(O)+e -I  dsa~v~(s,x*(s),v~(s))+ y~(t) 
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where a s is the operator defined by (2.4) with f = f "  and y~(t) is a zero 
mean local square-integrable martingale (in fact a square-integrable 
martingale). 

T h e o r e m  2.4. The stochastic process x ~ converges, in the sense of 
probability measures on the path space, as e goes to zero, to the solution 
of the ordinary differential equation 

:~ = u( t, x )  

with initial condition x(0) distributed on H with probability density 
proportional to p(0,-). | 

3. D I S C U S S I O N  OF T H E  M A T H E M A T I C A L  T E C H N I Q U E S  
A N D  P R O O F S  

As anticipated in the Introduction, we will prove Theorem 2.2 (limit 
under parabolic scaling) first. In order to illustrate our approach to the 
diffusion approximation of transport processes, let us recall the standard 
approach as presented, for instance, in ref. 11. In the latter setup one 
considers the collection of the solutions 0 ~ of the backward Kolmogorov 
equation for (X~(t), V~(t)), 

O~(t,x,v)=E, .... [g(X'(s), V'(s))],  t<<.s (3.1) 

as g varies in a suitable class of bounded continuous functions. 0 ~ is 
developed in a formal Taylor expansion in powers of e, with coefficients Ok, 
which is substituted in the backward Kolmogorov equation. In our case an 
additional difficulty arises from the fact that the operator A ~ itself depends 
on e by F ~. However, since the operator depends linearly on F ~, we know 
by Theorem 2.1 that 

A t =  A +  O(e) (3.2) 

By taking into account (3.2), a sequence of terms appears in the backward 
Kolmogorov equation, each multiplied by a power of e starting with the 
order e -2. The terms multiplied by the divergent powers of e have to be set 
equal to zero: 

2: /~00 = 0 (3.3) 

e i: . ~ 0 x + v . V x 0 o =  0 (3.4) 

By equating terms of the same order in e starting from the order zero, one 
obtains a sequence of equations for the remaining coefficients of the Taylor 
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expansion of ~ .  If one can prove the validity of the formal Taylor expan- 
sion (usually by analytic tools), this determines the form of the infinitesimal 
generator of the limiting process. Convergence can then be proved by 
Markov processes techniques, such as martingale problem techniques. 

In contrast, our approach consists in working directly on the sample 
paths of the process X ". We consider only the function g(x, v)= x (in the 
sequel all operators are extended in the obvious manner to vector-valued 
functions). With this choice of g we have fro = x and 

3 ~ , ,  = - v  ( 3 . 5 )  

Existence and regularity of solutions to (3.5) are ensured by the following 
Lemma 3.1. Let L2(E, #; Rk), keN,  be the space of Rk-valued, square- 
integrable functions on a finite measure space (E, p); for k = 1 we will write 
simply LZ(E, kt). Also, for any function ge CI(R 3, Rk), keN,  let ~3g denote 
the Jacobian matrix; I" I will denote indifferently the modulus of a vector or 
the norm of a matrix. 

Lemma 3.1. Equation (3.5) has a solution in L2(R3, MgIdv;R 3) 
and the solution is unique up to an additive constant. For any solution r 
of (3.5), for every c~ > 0, 

sup ml/=(v)Ir < oo (3.6) 
v 

Moreover, r e CI(R 3, R 3) and, for every e > 0, 

sup M1/~(v) I,~r < ~ (3.7) 
v 

Proof. See the Appendix. | 

To fix a specific solution of (3.5), in the sequel we will denote by ~b the 
solution of (3.5) such that 

f dv M(v) {l(V) r  (3.8) 

By setting 

(3.5) takes the form 

r  - eU(t, x))  = r x, v) 

Let 

-~ ~ v) - ( v - s U ( t , x ) )  At, xr  (t, x, = 

(3.9) 

(3.1o) 

- - 2  e e V )  - -e  R~(t,x,v)=e [A,.xO(t,x , -A , .xr  (3.11) 
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By applying Ito's formula to ~b ~, we get 

~(t, x~(t), w ( t ) ) -  ~(0,  x~(o), v~(0)) 

= dsO,0~(s,X~(s), W ( s ) ) + ~  -1 clS(~xO~V)(s,X~ W(s))  

+ e 2 ds A'(J~(s, X~(s), V~(s)) + Z~(t) (3.12) 

where 

6Gg i 
- -  I J j  8 x g v = ~  
axj 

and Z~(t) is a zero mean local square-integrable martingale [in fact a 
square-integrable martingale by Theorem 2.1, (3.15)-(3.17) below] with 

;o (Z~)( t )  = ~-2 ds A~((~fU*)(s, X~(s), V~(s)) 

;o _ ~-2 ds (A~O~)fU*(s, X~(s), V~(s)) 

;o - e  2 ds~(A~O~)*(s,X~(s), V~(s)) (3.13) 

where * denotes transposition (cf. ref. 24, Chapter2,  Section6). By 
combining (3.10)-(3.12), solving for S~ ds V~(s), and substituting into (2.8), 
we are able to obtain the following expression for the position component 
of the process: 

x~(t) = x~(o) + as U(s, X~(s)) + ~z~ ( t ) -  ~l-O~(t, x~(t), w(0) 

;o - ~(0,  x~(0), w(0) ) ]  + ~ as ~,(~(s, X~(s), W(s)) 

+ as (~xO~v)(s,X~(s), V~ + ~ as R~(s, X~(s), W(s))  (3.14) 

Note that by (3.9) also the term ~?z~b ~ is of order e. 
We now proceed to analyze each summand in the right-hand side of 

(3.14). Particular care is necessary to deal with the fourth summand, which 
is treated in Lemma 3.2. The martingale term eZ ~ is controlled by (eZ  ~) = 
e2(Z~), which in its turn is handled by proving a suitable law of large 
numbers (Lemma 3.5). 

822:67/1-2-16 
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Clearly, by Theorem 2.1 one can suppose that 

inf fi~ > 0 (3.15) 
e~O 

where, as in the Introduction, 

~ =  f dxdv F~(t,x,v) 

and choose C~ such that 

sup supM~(t,x,v)<~C*M*(v), Vv~R 3 (3.16) 
~ o  t , x  

Moreover, by Lemma 3.1 and (3.9), for any temperature T* and for every 
> 0, there exists C* > 0 such that for all e ~< eo, t ~< to, v ~ R 3, 

Ir x, v)l ~< C*M*(v) -1/~ 

1O~(v-eU(t, x))l 4 C*M*(v) -1/~ (3.17) 

Ir x, v')l < C*M*(v) 1/~M*(vl) -1/~ 

where v' is defined in (2.2). 

L e m m a  3.2. For  any positive 

sup E[sup e 2 I~b~(t, X~(t), V~(t))l 2(1+~)] < + ~  (3.18) 
e <~ eO t <~ tO 

ProoL By applying Ito's formula to I~b~(t, x, v)l 2(~+~), we get 

IgOr(t, X~(t), P( t ) ) l  2(1+~) 

= Iff~(o, x " ( 0 ) ,  v ' ( 0 ) ) l  2 .  +~) + ~' ds Os I~"12<a + ~)(s, X'(s), g~(s)) 
~0 

f2 + ~-~ ds (~xl~lR(~+~)v)(s, X~(s), g~(s)) 

+~ 2 ds(A~lfb~12(l+~)(s,X~(s), g~(s))+Z;(t) 

where Z ;  is a zero mean local square-integrable martingale and 

( Z ; ) ( t ) = e  2 ds(A~](b~14(l+~))(s,X~(s), V~(s)) 

f; --2~ -2 ds [(A~IO~[m+6))IfUI2(I+O)](s, X~(s), V~(s)) 
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The expected value of ( Z ; ) ( s )  is bounded by a constant times 

2 1  { f  (Ix dl) f dv 1 l V a - V  I 1~I4(I+6)I(s,x,v')F~(s,x, v , ) f ~ ( s , x ,  v) 
fig 

+ fdxdvq" ( s ,  x, i.))([~ej4(1 +3)(s, X, 1)) -t- 1)F~(s, x, v)} 

which is finite by Theorem 2.1, (3.15)-(3.17). Therefore Z~- is a square- 
integrable martingale and we have, by Doob's inequality, 

El-sup ezl~bfft, X~(t), V~(t))l 2(~ +~)] 
t <~ to 

~ 2 E [ - I @ ~ ( 0  , g e ( o ) ,  Ve(O))] 2(1+6)] 

+ eZto sup E[[Os ]~b~[ 2(1 +~l(s, S~(s), V~(s))] ] 
s~< to 

+ eto sup EEl(c3 [~b~l 2(1 + ~v)(s, S~(s), V~(s))l ] 
s~< t0 

+ to sup E[l(A~l(~flm+~))(s, X~(s), V~(s))l ] 
s~< t o 

+ 2e{to sup E[(A ~ [~e14(l +6))(S, Xe(s), Ve(S)) 
s <~ t 0 

- 2[(A ~ I~b~[ m +~))Iqi~l 2(1 + a)](s, X~'(s), V'(s))] }1,,'2 

where all the summands on the right-hand side are uniformly bounded in 
by Theorem 2.1, (3.15)-(3.17). | 

Let 

u ' ( t )  = - ~ [ r  x ' ( t ) ,  w ( t ) )  - ~ ( o ,  x~(o) ,  z ' ( o ) ) ]  

+ ~ as Os(~(s, X~(s), V~(s)) 

fo + ds (SxC/) ~ v)(s, X~(s), V~(s)) 

+ ~ ds R~(s, X~(s), V'(s)) (3.19) 

[ . emma  3.3. The process U ~ converges to zero, in the sense of 
probability measures on the path space, as e goes to zero. 
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Proof. We have, for any 6 > 0, 

E[sup ] U~(t)[ ] 
t~< tO 

~< 2el - 1/(i + ~){E[sup e2 Iqt'(t, X~(t), V~(t))l 2(1 + a)] } 1/E2(1 + a)~ 
t~< to 

+ eto sup E[IR'(s,  X~(s), VS(s))l ] 
s <~ to 

+et o sup E[lOs~b~(s, XS(s), V"(s))l ] 
s ~  to 

+ eto sup E[[a~b(VS(s) - eU(s, X~(s))) a~ U(s, X~(s)) VS(s)l ] 
s <~ to 

The first summand is dominated by a constant times 2e 1-1/(1+~) by 
Lemma 3.2. As far as the second term is concerned, we have 

sup E[IR~(s, X~(s), V~(s))l] 
s ~  to 

= a-2 sup E[lA~q)~(s, X~(s), V~(s ) ) -  AS(b~(s, XS(s), V~(s))[ ] 
s <~ to 

j~a s ~ to 

X IV 1 - -D]  [~e(S, X, D t) - - ~ e ( S ,  X, U)[ [ F ( S ,  x, v l ) - M ~ ( s ,  x, v l ) [  

x M~(s, x, v) + f dxdv  f IVl - vl l(~(s, x, v')-(b~(s, x, v)[ 

x [f~(s, x, Vl)-MS(s,  x, u1) [ lEe(s, x, v ) - M S ( s ,  x, v)]} 

where the right-hand side is bounded uniformly in e by Theorem 2.1, 
(3.15) (3.17). Analogously, the last two summands are dominated by et o 
times a constant, by Theorem 2.1, (3.15)-(3.17). | 

L e m m a  3.4. For every sequence {~k} converging to zero, the family 
of stochastic processes {X sk} is relatively compact. 

Proof. By (3.14) 

f2 x~(t)  = x~(o) + ds g(s, x~(s))  + g~(t) + ~ z ~ ( t )  

The sequence of the sums of the first three terms is relatively compact by 
Theorem 2.1, Lemma 3.3., and the fact that sup FU(s, x)l < +o0. Set 

s ,x  

~(s) = [A ~ Ir 2 _ 2q~. (A~b~)](s ' XS(s), V~(s)) 
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Then, we have, by (3.13), 

t rE[ (Z~) ( t ) ]=  dsE[(~(s)] 

1 fdxdvF~(s ,x ,v) f ,  dv~dco E I-~(s)-I ~ ~,1-~.~0 

)< (/)1 - -  V)  " 09 IOe(S ,  X ,  1)') - -  Oe(S ,  X ,  V) t  2 F ~ ( s ,  x, U1) 

which is finite by Theorem 2.1, (3.15) (3.17), so that Z ~ is a square- 
integrable martingale and, denoting by Y~ the a-algebra generated by 
eZ~(s), s <<. t, for any r/>0,  O <~ t <<. t + ~l <~ to, 

E[l~Z~(t + ~ ) -  ~z~ ~/o~]  

= tr E[(eZ ' ) ( t  + ~) - (~Z~)(t) I Y~] 

~<E[ sup f ' + " d s ( ~ ( s ) , ~ l  
I_t ~ to rl t 

Since, for any 6 > 0, 

E[t :uP ftt+"ds~(s)] 

<<tl 1 I/(x+6lt~/(l+6){sup E[~(s)I+6]}I/(I+6~ 
s ~  tO 

where the expectation in the last factor of the right-hand side is bounded, 
uniformly in e, by Theorem 2.1, (3.15) (3.17), it follows that {ekZ ~k} is 
relatively compact by ref. 24, Theorem 8.6, Chapter 3. Finally, {X ~ } is 
relatively compact because all limit points of X~(0) + ~o ds U(s, X~k(s)) + 
U~k(.) are continuous. | 

For every measurable function g such that 

f dv M(v) [g(t, x, v)[ < c~, 

set 

V(t, x) (3.20) 

~(t ,x)=~ f dv M(v) g(t ,x,v) (3.21) 

Lemma 3.5. 
for some a > 1, 

Let g be a real-valued measurable function such that, 

dt ~ dx dv (t(v)- 1 M(v)l/~lg(t ' x, v)l 2 < oO (3.22) 
d 
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where ~(v) is defined by (2.1) with f = M .  Then 

lim E sup ds [g(s, X~(s), V~(s)) - ~(s, X~(s))] = 0  (3.23) 
c ~ O  L.t<~to 

Proof. It is proved below in Theorem A.1 that for every c~> 1 A 
maps continuously L2([0, to] x H x  R 3, FIM 1/~ ds dx dr) onto the subspace 
of L2([0, to] x H x R  3, F~-lMU~dsdxdv) of the functions g such that 
~(t, x ) =  0, which we call ~ ( A ) .  Thus, the linear span of the functions 
71(t, x)A72(v) with 71 continuously differentiable and 72 bounded and 
continuous is dense in N:(A); moreover for g, heN~(A), by choosing 
T* < 2c~5P in Theorem 2.1, one can see that 

ffo ds EEIg(s, X~(s), W~(s) ) - R(s, X~(s), V~(s))l ] 

is bounded, uniformly in ~, by a constant times 

On the other hand, Theorem2.1 implies that 

ro0 lim ds BE 17,(s, x~(s)) 372(We(s)) 
8 ~ 0  

- 7,(s, X~(s)) A~Tz(S, X~(s), W~(s))l ] = 0 

Therefore it is enough to prove that 

V J lim E sup ds A~7(s, X~(s), V~(s)) 
~ 0  Lt<~to 

= 0 (3.24) 

for any function 7 bounded, continuous in v, and continuously differen- 
tiable in t and x, with bounded derivatives. By applying Ito's formula to 7, 
we get 

- ds A~7(s, X~(s), V~(s)) 

= e2rT(0, x ' (0) ,  w(0))  - 7(t, x~(t), w(t ) ) ]  

+ ~2 ds ~sT(s, Xffs), V~(s)) + e ds (0x7 v)(s, X~(s), V~(s)) + ~2Z;(t) 
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where Z ;  is a mean-zero square-integrable martingale with 

( Z ; > ( t )  = e -2 ds(A~lylZ)(s,X~'(s),  g~(s)) 

- 2~-~ as (,;A~7)(s, X~(s), W(s))  

Hence, by Doob's inequality we have 

~< 2a 211711 ~ + gZto H~71I oo + eto I[Ox?ll ~ sup sup El i  V~(t)l ] 
e~<a0 t ~ to 

+ 2e{t o sup E [ ( A  ~ 17[ 2)( s, X~(s), V~(s)) -- 2(TA~7)( s, X~(s), V~(s))] } ~,'2 
s < . t o  

where the right-hand side vanishes as g goes to zero. | 

Proo f  o f  Theorem 2.2. For every sequence {ek} converging to zero, 
we have 

E [ sup  ](akZ*~ ) ( t )  - tDII ] 
t ~ t o  

<~ t o sup EEl {A~(~b*~U *) - (A~b~)~b ~* - ~U(A~b~) * 
s~< t o 

- ~ ( ~ * )  + (3~)~*  + ~(>~)* }(s, X~(s), V~(s))l ] 

where D is defined by (2.9). The first term on the right-hand side converges 
to zero by Theorem 2.1, Lemma 3.1, (3.15)-(3.17) (see proofs of Lemmas 
3.2 and 3.4), while the second term converges to zero by Lemmas 3.1 
and 3.5. In addition, 

E [sup l e~Z~k(t) - ek l ~ k ( t -  )l 2] 

E [ sup  2 ~ = ~10 (t, x~( t ) ,  w ~ ( t ) ) - O ~ ( t ,  x~( t ) ,  w~(t-))l~3 
t <~ t o 

and the right-hand side goes to zero, as k--, 0% by Lemma 3.2. Therefore 
by the martingale central limit theorem (ref. 24, Chapter 7, Theorem 1.4), 
{akZ ~} converges in the sense of probability measures on the path space 

to , , ~  W, where W is a standard Brownian motion. By Lemma 3.3, all 
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limit points of {X ~k} are solutions of the stochastic differential 
equation (1.4). As (1.4) has a unique solution (see, for instance, ref. 24, 
Theorem 3.7, Chapter 5), the assertion is proved. | 

We now turn to the hyperbolic case. 

Proof of  Theorem 2.4. The function 

lj2 ) 
p(t, x) \ \ T ( t ,  x)J I v -  u(t, x)] (3.25) 

~b being defined by Lemma 3.1 and (3.8), satisfies 

a~o(t, x, v) = - ( v  - u(t, x) ) (3.26) 

where a is the operator defined by (2.4) with f = m  and m is the local 
Maxwellian of Theorem 2.3. Since u is smooth, by Lemma 3.1, ~o belongs to 
cgl([0, to] x H x R 3) and, for every ~ > 0, there exist constants c* such that 

sup I~o(t, x, v)l ~< c*M*(v) -1/~ 
t , x  

sup I~t~0(t, x, v)l <.c*M*(v) -1/~ (3.27) 
t ,X 

sup [Ox~O(t, x, v)vl ~ c* M*(v) 1/~ 
t , x  

where M* is as in Theorem 2.3. By applying Ito's formula to (p, we get, 
setting 

r~(t, x, v )=e- l [a~o-a~o] ( t ,  x, v) 

f2 x~(t)=x~(O)+ clsu(s,x~ 

f2 - r x~(0), v~(0))] + e ds as~O~(s, x~(s), v~(s)) 

f2 + ~ ds ~o(s ,  x~(s), v~(s)) v~(s) 

f2 + ~ ds r~(s, x~(s), v~(s)) + ez~(t) (3.28) 

where z ~ is a zero-mean square-integrable martingale with 

f; (z~)(t)  = ~-1 ds [a~(r162 *) -(a~r * -  q~(a~o)* ](s, x~(s), v~(s)) (3.29) 
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Then the same computations as in Lemmas 3.2 and 3.3 show that 

lim E[sup  e [ q~(0, x~(0), v~(0))-  q~(t, x~(t), v~(t))] ] = 0 
~ ~ 0 t <~ to 

and 
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lim E [ s u p e  f]ds[~?~p+C~xqOV+r~](s,x~(s),v~(s))1=0 
e + O  Lt<~to  

In addition, 

sup E [tr [a~(q0ep *) -- (a~o) (p * - ~o(a~o*)](s, x~(s), v~(s))] 
s ~  to 

= sup dx dv do) dv 1 
s ~ t o - - ~  e (V l - -  v ) . co  >~0 

x ( v l -  v)-~o I~o(s, x, v ) -  q)(s, x, v')12f~(s, x, vl)f~(s, x, v) 

[~  = ~ dx dv f~(s, x, v)], where the right-hand side is bounded uniformly in 
e by Theorem 2.3 and (3.27). Since, by Doob's inequality, 

E [ sup  lez~(t)[ 2] <~ 4e 2 tr E[ (z~)(to)] 
t ~  t 0 

ez ' converges to zero as ~ goes to zero. Therefore, for every sequence {~k} 
converging to zero, {x ~ } is relatively compact and all its limit points 
satisfy (1.5); as (1.5) has a unique solution, this proves the assertion. | 

APPENDIX 

Theorem 3.1 is a consequence of the following result. 

T h e o r e m  A.1. For every gELZ(R 3, Mg1-1 dr) such that 

f dv g(v) M(v) = 0 

the equation 

(A.1) 

has a solution in L2(R 3, Mgldv), unique up to an additive constant. 
Moreover, for every ~ ~> 1, if g e L2(R 3, M1/~ -1 dr), then any solution 
belongs to L2(R3, M1/=gldv), and if gM1/(2~)/g11/2 is bounded, then 
7M1/(2~1~1/2 is bounded. 

A? = g (A.2) 
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Proof. Consider the operator 

~_= ~]-I/2M1/(2~)~M-~/(2~)~-a/2 = R ~ _ I  

Then Eq. (A.2) is equivalent to 

where 
( R  ~ -  i ) #  = s? ~ 

~ = M1/(2~) gII/2~, ~ = M1/(2~ g 1 ~/2 g 

(A.3) 

(A.4) 

For every ~ >  1, the kernel /~(v, v') of R ~ is bounded pointwise by a 
constant, depending on ~, fi and T, times k2(v(c~T) -1/2, v'(c~T)-m), where 
k2(v, v') is the kernel defined in (48) of ref. 20. In Ref. 20, pp. 46~,9, Grad 
proves that the kernel k (3) of the third iterate of the integral operator 
corresponding to k2 is square-integrable, so that the same holds for /~. 
Thus, (/~)3 is a Hilbert-Schmidt operator, which implies that k ~ is 
compact on L2(dv). The kernel of ( / ~ -  I)  is the linear span of M1/~2~)~1~/2, 
while the kernel of ( K S - I )  * is the linear span of M1-1/(2c0{11/2. Then, for 
every ~ e L2(dv) such that ~ dv ~(v)  M 1- 1/(2~)(v) gll/2(v) = 0, (A.4) has a 
solution in L2(dv), unique up to addition of a constant times M~/(2~)gTm. 
Therefore, for every :r 1, for every geL2(R 3, M1/~g 1 ~ dv) such that (A.1) 
holds, (A.2) has a solution in L2(R3, M~/~gldv); since g belongs to 
LZ(R 3, Mcl-1 dr) as well, the solution is unique, up to an additive constant, 
in L2(R 3, Mcl dr). Moreover, 

sup f dr' k2(v, v ' )  z < oQ 
0 

(A.5) 

[ref. 20, (59) and (61)], so that, for any solution ~ of (A.4), I]~l]~ is 
bounded, up to a multiplicative constant, by 

which yields the last assertion of the statement. | 

Proof of Theorem 3.1. The condition (3.6) is immediate from 
Theorem A.1. An explicit computation shows that the kernel k(v, v') of 
.d + ~ I =  K is given by a constant times 

(Iv-v'l) l e x p { - [ v " ( v ' - v ) ] z / ( Z T l v ' - v [ 2 ) }  (A.6) 

k is continuously differentiable in v, for v g: v', and L~vk(v, v')l is dominated, 
up to a multiplicative constant, by 

k(v, v')(1 + 3 Iv'12/~+ IvI2/:?) (A.7) 
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As in the p r o o f  of T h e o r e m A . 1 ,  for every ~ > 1 ,  M1/12~l(v)k(v ,v  ') 

M-1/(2~)(v')  is b o u n d e d  by a cons tan t  t imes k z ( v / ( a T )  1/2, v ' /(~T)l/2),  so 
that ,  by (59) and  (61) in ref. 20, M1/(2~)(v)[O~k(v , . ) lM-1/(2~)( . )  is 

in tegrable  and the in tegra l  is b o u n d e d  in v. Since Ir is b o u n d e d  
for every c~ ~> 1, this implies tha t  Kr  is con t inuous ly  differentiable a n d  
M1/c2~)I~(Kr I is b o u n d e d  for every e >/1, which yields the assert ion,  by 
the obse rva t ion  tha t  r = Kr  + v. | 
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